Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. The concept was proposed by Mary Jane West-Eberhard, among others. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural, phenological) that may or may not be permanent throughout an individual's lifespan. The term was originally used to describe developmental effects on morphological characters, but is now more broadly used to describe all phenotypic responses to environmental change, such as acclimation or acclimatization, as well as learning. The special case when differences in environment induce discrete phenotypes is termed polyphenism.
Generally, phenotypic plasticity is more important for immobile organisms (e.g. plants) than mobile organisms (e.g. most animals), as mobile organisms can often move away from unfavourable environments. Nevertheless, mobile organisms also have at least some degree of plasticity in at least some aspects of the phenotype. One mobile organism with substantial phenotypic plasticity is Acyrthosiphon pisum of the aphid family, which exhibits the ability to interchange between asexual and sexual reproduction, as well as growing wings between generations when plants become too populated.
Phenotypic plasticity in plants includes the allocation of more resources to the roots in soils that contain low concentrations of nutrients and the alteration of leaf size and thickness.Dandelion are well known for exhibiting considerable plasticity in form when growing in sunny versus shaded environments. The transport proteins present in roots are also changed depending on the concentration of the nutrient and the salinity of the soil. Some plants, Mesembryanthemum crystallinum for example, are able to alter their photosynthetic pathways to use less water when they become water- or salt-stressed.