In biology, Phase variation is a method for dealing with rapidly varying environments without requiring random mutation. It involves the variation of protein expression, frequently in an on-off fashion, within different parts of a bacterial population. As such the phenotype can switch at frequencies that are much higher (sometimes >1%) than classical mutation rates. Phase variation contributes to virulence by generating heterogeneity. Although it has been most commonly studied in the context of immune evasion, it is observed in many other areas as well and is employed by various types of bacteria, including Salmonella species.
Salmonella use this technique to switch between different types of the protein flagellin. As a result, flagella with different structures are assembled. Once an adaptive response has been mounted against one type of flagellin, or if a previous encounter has left the adaptive immune system ready to deal with one type of flagellin, switching types renders previously high affinity antibodies, TCRs, and BCRs ineffective against the flagella.
Site-specific recombinations are usually short and occur at a single target site within the recombining sequence. For this to occur there are typically one or more cofactors (to name a few: DNA-binding proteins and the presence or absence of DNA binding sites) and a site-specific recombinase. There is a change in orientation of the DNA that will affect gene expression or the structure of the gene product. This is done by changing the spatial arrangement of the promoter or the regulatory elements.
Through the utilization of specific recombinases, a particular DNA sequence is inverted, resulting in an ON to OFF switch and vice versa of the gene located within or next to this switch. Many bacterial species can utilize inversion to change the expression of certain genes for the benefit of the bacterium during infection. The inversion event can be simple by involving the toggle in expression of one gene, like E. coli pilin expression, or more complicated by involving multiple genes in the expression of multiple types of flagellin by S. typhimurium. Fimbrial adhesion by the type I fimbriae in E. coli undergoes site specific inversion to regulate the expression of fimA, the major subunit of the pili, depending on the stage of infection. The invertible element has a promoter within it that depending on the orientation will turn on or off the transcription of fimA. The inversion is mediated by two recombinases, FimB and FimE, and regulatory proteins H-NS, Integration Host Factor (IHF) and Leucine responsive protein (LRP). The FimE recombinase has the capability to only invert the element and turn expression from on to off while FimB can mediate the inversion in both directions.