Pharmaceutical engineering is a branch of pharmaceutical science and technology that involves development and manufacturing of products, processes, and components in the pharmaceuticals industry (i.e. drugs & biologics). While developing pharmaceutical products involves many interrelated disciplines (e.g. medicinal chemists, analytical chemists, clinicians/pharmacologists, pharmacists, chemical engineers, biomedical engineers, etc.), the specific subfield of "pharmaceutical engineering" has only emerged recently as a distinct engineering discipline. This now brings the problem-solving principles and quantitative training of engineering to complement the other scientific fields already involved in drug development.
There are still relatively few academic programs with this explicit focus. The first one began at the University of Michigan, as a joint project between their College of Engineering and School of Pharmacy. In Asia, the PhD program in pharmaceutical engineering is available in Thailand, for example, at Faculty of Pharmacy, Silpakorn University (since 2009). A new innovative program was launched in Albi, France by Ecole des Mines-Albi - IMT in september 2016, dedicated to advanced pharmaceutical engineering (ADPHARMING). Because such programs are not yet common, many pharmaceutical engineers have had their formal engineering training in chemical or biomedical engineering.
Most pharmaceutical engineering programs are graduate-level, and as with biomedical engineering there is generally an expectation that engineers and scientists working in pharmaceutical engineering should have some relevant graduate-level education. Many have a masters or PhD degree in chemical or biomedical engineering, or a related science. In Italy there is a university degree course (5 years) in Chemistry and Pharmaceutical Technologies (Chimica e Tecnologie Farmaceutiche), different from pharmacy, that ability as a pharmacist and different roles in the industry as an engineer (for the Italian legislation is not really an engineer though performs the same tasks).
In most jurisdictions, engineering licensure (e.g. Licensed "Professional Engineer" or P.E.) is not discipline-specific, so any licensed engineer with competency in pharmaceutical engineering may qualify as licensed. However, in the U.S., most pharmaceutical engineers fall under the "industrial exemption," which does not require a (P.E.) license for those engineers whose work is completely internal and for a private employer. There are ongoing debates about whether to narrow or eliminate this exemption from engineering licensure, and the Executive Director of the National Society of Professional Engineers (NSPE) recently advocated requiring licensure for engineers in the pharmaceutical industry (among a few others).