Identifiers | |
---|---|
17466-45-4 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:8040 |
ChemSpider | 28467534 |
ECHA InfoCard | 100.037.697 |
PubChem | 441542 |
|
|
|
|
Properties | |
C35H48N8O11S | |
Molar mass | 788.87 g·mol−1 |
Appearance | Needles |
Melting point | 281 °C (538 °F; 554 K) (hyd) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Phalloidin belongs to a class of toxins called phallotoxins, which are found in the death cap mushroom (Amanita phalloides). It is a rigid bicyclic heptapeptide that is lethal after a few days when injected into the bloodstream. The major symptom of phalloidin poisoning is acute hunger due to the destruction of liver cells. It functions by binding and stabilizing filamentous actin (F-actin) and effectively prevents the depolymerization of actin fibers. Due to its tight and selective binding to F-actin, derivatives of phalloidin containing fluorescent tags are used widely in microscopy to visualize F-actin in biomedical research.
Phalloidin was one of the first cyclic peptides to be discovered. It was isolated from the death cap mushroom and crystallized by Feodor Lynen and Ulrich Wieland in 1937. Its structure is unusual in that it contains a cysteine-tryptophan linkage to form a bicyclic heptapeptide. This linkage had not been characterized before and makes the structure elucidation of phalloidin significantly more difficult. They determined the presence of the sulfur atom using UV spectroscopy and found that this ring structure had a slightly shifted wavelength. Raney nickel experiments confirmed the presence of sulfur in the tryptophan ring. The researchers found the desulfurized tryptophan was still circular, which demonstrated that the structure of phalloidin is normally bicyclic. Once linearized, the amino acid sequence of de-sulfurized phalloidin was elucidated through Edman degradation by Wieland and Schön in 1955.
Due to its high affinity for actin, scientists discovered its potential use as a staining reagent for effective visualization of actin in microscopy. Derivatives conjugated with fluorophores are sold widely. Because of its ability to selectively bind filamentous actin (F-actin) and not actin monomers (G-actin), fluorescently labeled phalloidin is more effective than antibodies against actin.
Phalloidin is a bicyclic heptapeptide containing an unusual cysteine-tryptophan linkage. The gene coding for synthesis of phalloidin is part of the MSDIN family in the Death Cap mushroom and codes for a 34-39 amino acid propeptide. A proline residue flanks the seven-residue region that will later become phalloidin. After translation, the peptide must be proteolyticly excised, cyclized, hydroxylated, Trp-Cys cross-linked to form tryptathionine, and epimerized to form a D-Thr. The order and exact biochemical mechanism for these steps is not yet fully understood. The current belief is that the necessary biosynthetic genes are clustered near the MSDIN genes.