*** Welcome to piglix ***

Peukert's law


Peukert's law, presented by the German scientist in 1897, expresses approximately the change in capacity of rechargeable lead–acid batteries at different rates of discharge. As the rate of discharge increases, the battery's available capacity decreases, approximately according to Peukert's law.

Manufacturers specify the capacity of a battery at a specified discharge rate. For example, a battery might be rated at 100 A·h when discharged at a rate that will fully discharge the battery in 20 hours (at 5 amperes for this example). If discharged at a faster rate the delivered capacity is less. Peukert's law describes a power relationship between the discharge current (normalized to some base rated current) and delivered capacity (normalized to the rated capacity) over some specified range of discharge currents. If Peukert's constant , the exponent, were equal to unity, the delivered capacity would be independent of the current. For a real battery the exponent is greater than unity, and capacity decreases as discharge rate increases. For a lead–acid battery is typically between 1.1 and 1.3. For different lead-acid rechargeable battery technologies it generally ranges from 1.05 to 1.15 for VRSLAB AGM batteries, from 1.1 to 1.25 for gel, and from 1.2 to 1.6 for flooded batteries. The Peukert constant varies with the age of the battery, generally increasing (getting worse) with age. Application at low discharge rates must take into account the battery self-discharge current. At very high currents, practical batteries will give less capacity than predicted with a fixed exponent. The equation does not take into account the effect of temperature on battery capacity.


...
Wikipedia

...