In differential geometry and theoretical physics, the Petrov classification (also known as Petrov–Pirani–Penrose classification) describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.
It is most often applied in studying exact solutions of Einstein's field equations, but strictly speaking the classification is a theorem in pure mathematics applying to any Lorentzian manifold, independent of any physical interpretation. The classification was found in 1954 by A. Z. Petrov and independently by Felix Pirani in 1957.
We can think of a fourth rank tensor such as the Weyl tensor, evaluated at some event, as acting on the space of bivectors at that event like a linear operator acting on a vector space:
Then, it is natural to consider the problem of finding eigenvalues and eigenvectors (which are now referred to as eigenbivectors) such that