*** Welcome to piglix ***

Perturbation series


Perturbation theory comprises mathematical methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbation" parts. Perturbation theory is applicable if the problem at hand cannot be solved exactly, but can be formulated by adding a "small" term to the mathematical description of the exactly solvable problem.

Perturbation theory leads to an expression for the desired solution in terms of a formal power series in some "small" parameter – known as a perturbation series – that quantifies the deviation from the exactly solvable problem. The leading term in this power series is the solution of the exactly solvable problem, while further terms describe the deviation in the solution, due to the deviation from the initial problem. Formally, we have for the approximation to the full solution A, a series in the small parameter (here called ε), like the following:

In this example, A0 would be the known solution to the exactly solvable initial problem and A1, A2, ... represent the higher-order terms which may be found iteratively by some systematic procedure. For small ε these higher-order terms in the series become successively smaller.

An approximate "perturbation solution" is obtained by truncating the series, usually by keeping only the first two terms, the initial solution and the "first-order" perturbation correction

Perturbation theory is closely related to methods used in numerical analysis. The earliest use of what would now be called perturbation theory was to deal with the otherwise unsolvable mathematical problems of celestial mechanics: for example the orbit of the Moon, which moves noticeably differently from a simple Keplerian ellipse because of the competing gravitation of the Earth and the Sun.

Perturbation methods start with a simplified form of the original problem, which is simple enough to be solved exactly. In celestial mechanics, this is usually a Keplerian ellipse. Under non-relativistic gravity, an ellipse is exactly correct when there are only two gravitating bodies (say, the Earth and the Moon) but not quite correct when there are three or more objects (say, the Earth, Moon, Sun, and the rest of the solar system) and not quite correct when the gravitational interaction is stated using formulations from General relativity.


...
Wikipedia

...