*** Welcome to piglix ***

Periodic table (crystal structure)


For elements that are solid at standard temperature and pressure the table gives the crystalline structure of the most thermodynamically stable form(s) in those conditions. In all other cases the structure given is for the element at its melting point. Data is presented only for the first 112 elements (hydrogen through copernicium; it is not available for any further ones), and predictions are given for elements that have never been produced in bulk (astatine, francium, and elements 100–112).

Many metals adopt close packed structures i.e. hexagonal close packed and face centred cubic structures (cubic close packed). A simple model for both of these is to assume that the metal atoms are spherical and are packed together in the most efficient way (close packing or closest packing). In closest packing every atom has 12 equidistant nearest neighbours, and therefore a coordination number of 12. If the close packed structures are considered as being built of layers of spheres then the difference between hexagonal close packing and face centred cubic is how each layer is positioned relative to others. Whilst there are many ways that can be envisaged for a regular buildup of layers:

In the ideal hcp structure the unit cell axial ratio is ~ 1.633, However, there are deviations from this in some metals where the unit cell is distorted in one direction but the structure still retains the hcp space group—remarkable all the elements have a ratio of lattice parameters c/a < 1.633 (best are Mg and Co and worst Be with c/a ~ 1.568). In others like Zn and Cd the deviations from the ideal change the symmetry of the structure and these have a lattice parameter ratio c/a > 1.85.


...
Wikipedia

...