This article describes periodic points of some complex quadratic maps. A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers. A periodic point of a map is a value of the variable that occurs repeatedly after intervals of a fixed length.
These periodic points play a role in the theories of Fatou and Julia sets.
Let
be the complex quadric mapping, where and are complex-valued.
Notationally, is the -fold composition of with itself—that is, the value after the k-th iteration of function Thus