In number theory, a perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number. Or to put it algebraically, if
where
is the iterated totient function and c is the integer such that
then n is a perfect totient number.
The first few perfect totient numbers are
For example, start with 327. Then φ(327) = 216, φ(216) = 72, φ(72) = 24, φ(24) = 8, φ(8) = 4, φ(4) = 2, φ(2) = 1, and 216 + 72 + 24 + 8 + 4 + 2 + 1 = 327.
It can be observed that many perfect totient are multiples of 3; in fact, 4375 is the smallest perfect totient number that is not divisible by 3. All powers of 3 are perfect totient numbers, as may be seen by induction using the fact that
Venkataraman (1975) found another family of perfect totient numbers: if p = 4×3k+1 is prime, then 3p is a perfect totient number. The values of k leading to perfect totient numbers in this way are
More generally if p is a prime number greater than 3, and 3p is a perfect totient number, then p ≡ 1 (mod 4) (Mohan and Suryanarayana 1982). Not all p of this form lead to perfect totient numbers; for instance, 51 is not a perfect totient number. Iannucci et al. (2003) showed that if 9p is a perfect totient number then p is a prime of one of three specific forms listed in their paper. It is not known whether there are any perfect totient numbers of the form 3kp where p is prime and k > 3.
This article incorporates material from on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.