*** Welcome to piglix ***

Perfect hashing


In computer science, a perfect hash function for a set S is a hash function that maps distinct elements in S to a set of integers, with no collisions. In mathematical terms, it is a total injective function.

Perfect hash functions may be used to implement a lookup table with constant worst-case access time. A perfect hash function has many of the same applications as other hash functions, but with the advantage that no collision resolution has to be implemented.

A perfect hash function with values in a limited range can be used for efficient lookup operations, by placing keys from S (or other associated values) in a lookup table indexed by the output of the function. One can then test whether a key is present in S, or look up a value associated with that key, by looking for it at its cell of the table. Each such lookup takes constant time in the worst case.

A perfect hash function for a specific set S that can be evaluated in constant time, and with values in a small range, can be found by a randomized algorithm in a number of operations that is proportional to the size of S. The original construction of Fredman, Komlós & Szemerédi (1984) uses a two-level scheme to map a set S of n elements to a range of O(n) indices, and then map each index to a range of hash values. The first level of their construction chooses a large prime p (larger than the size of the universe from which S is drawn), and a parameter k, and maps each element x of S to the index


...
Wikipedia

...