*** Welcome to piglix ***

Peak minerals


Peak minerals marks the point in time when the largest production of a mineral will occur in an area, with production declining in subsequent years. While most mineral resources will not be exhausted in the near future, global extraction and production is becoming more challenging. Miners have found ways over time to extract deeper and lower grade ores with lower production costs. More than anything else, declining average ore grades are indicative of ongoing technological shifts that have enabled inclusion of more 'complex' processing – in social and environmental terms as well as economic - and structural changes in the minerals exploration industry and these have been accompanied by significant increases in identified Mineral Reserves.

The concept of peak minerals offers a useful model for representing the changing impacts associated with processing declining resource qualities in the lead up to, and following, peak mineral production in a particular region within a certain time-frame.

Peak minerals provides an analytical framework within which the economic, social and environmental trajectories of a particular mining industry can be explored in relation to the continuing (and often increasing) production of mineral resources. It focuses consideration on the change in costs and impacts associated with processing easily accessible, lower cost ores before peak production of an individual mine or group of mines for a given mineral. It outlines how the economy might respond as processing becomes characterised by higher costs as the peak is approached and passed. Issues associated with the concept of peak minerals include:

Giurco et al. (2009) indicate that the debate about how to analytically describe resource depletion is ongoing. Traditionally, a fixed stock paradigm has been applied, but Tilton and Lagos (2007) suggest using an opportunity cost paradigm is better because the usable resource quantity is represented by price and the opportunity cost of using the resource. Unlike energy minerals such as coal or oil — or minerals used in a dissipative or metabolic fashion like phosphorus — most non-energy minerals and metals are unlikely to run out. Metals are inherently recyclable and more readily recoverable from end uses where the metal is used in a pure form and not transformed or dissipated; in addition, metal ore is accessible at a range of different grades. So, although metals are not facing exhaustion, they are becoming more challenging to obtain in the quantities that society demands, and the energy, environmental and social cost of acquiring them could constrain future increases in production and usage.


...
Wikipedia

...