*** Welcome to piglix ***

Passive device


Passivity is a property of engineering systems, used in a variety of engineering disciplines, but most commonly found in analog electronics and control systems. A passive component, depending on field, may be either a component that consumes (but does not produce) energy (thermodynamic passivity), or a component that is incapable of power gain (incremental passivity).

A component that is not passive is called an active component. An electronic circuit consisting entirely of passive components is called a passive circuit (and has the same properties as a passive component). Used out-of-context and without a qualifier, the term passive is ambiguous. Typically, analog designers use this term to refer to incrementally passive components and systems, while control systems engineers will use this to refer to thermodynamically passive ones.

Systems for which the small signal model is not passive are sometimes called locally active (e.g. transistors and tunnel diodes). Systems that can generate power about a time-variant unperturbed state are often called parametrically active (e.g. certain types of nonlinear capacitors).

In control systems and circuit network theory, a passive component or circuit is one that consumes energy, but does not produce energy. Under this methodology, voltage and current sources are considered active, while resistors, capacitors, inductors, transistors, tunnel diodes, metamaterials and other dissipative and energy-neutral components are considered passive. Circuit designers will sometimes refer to this class of components as dissipative, or thermodynamically passive.

While many books give definitions for passivity, many of these contain subtle errors in how initial conditions are treated (and, occasionally, the definitions do not generalize to all types of nonlinear time-varying systems with memory). Below is a correct, formal definition, taken from Wyatt et al. (which also explains the problems with many other definitions). Given an n-port R with a state representation S, and initial state x, define available energy EA as:


...
Wikipedia

...