In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, 4 can be partitioned in five distinct ways:
The order-dependent composition 1 + 3 is the same partition as 3 + 1, while the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition 2 + 1 + 1.
A summand in a partition is also called a part. The number of partitions of n is given by the partition function p(n). So p(4) = 5. The notation λ ⊢ n means that λ is a partition of n.
Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials, the symmetric group and in group representation theory in general.
The seven partitions of 5 are:
In some sources partitions are treated as the sequence of summands, rather than as an expression with plus signs. For example, the partition 2 + 2 + 1 might instead be written as the tuple (2, 2, 1) or in the even more compact form (22, 1) where the superscript indicates the number of repetitions of a term.
There are two common diagrammatic methods to represent partitions: as Ferrers diagrams, named after Norman Macleod Ferrers, and as Young diagrams, named after the British mathematician Alfred Young. Both have several possible conventions; here, we use English notation, with diagrams aligned in the upper-left corner.