In algebra, the partial fraction decomposition or partial fraction expansion of a rational function (that is a fraction such that the numerator and the denominator are both polynomials) is the operation that consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The importance of the partial fraction decomposition lies in the fact that it provides an algorithm for computing the antiderivative of a rational function.
In symbols, one can use partial fraction expansion to change a rational fraction in the form
where ƒ and g are polynomials, into an expression of the form
where gj (x) are polynomials that are factors of g(x), and are in general of lower degree. Thus, the partial fraction decomposition may be seen as the inverse procedure of the more elementary operation of addition of rational fractions, which produces a single rational fraction with a numerator and denominator usually of high degree. The full decomposition pushes the reduction as far as it can go: in other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial fraction expansion expresses that fraction as a sum of a polynomial and one of several fractions, such that:
As factorization of polynomials may be difficult, a coarser decomposition is often preferred, which consists of replacing factorization by square-free factorization. This amounts to replace "irreducible" by "square-free" in the preceding description of the outcome.
Assume a rational function in one indeterminate x has a denominator that factors as