Parthenogenesis is a mode of asexual reproduction in which offspring are produced by females without the genetic contribution of a male. Among all the sexual vertebrates, the only examples of true parthenogenesis, in which all-female populations reproduce without the involvement of males, are found in squamate reptiles (snakes and lizards). There are about 50 species of lizard and 1 species of snake that reproduce solely through parthenogenesis (obligate parthenogenesis). It is unknown how many sexually reproducing species are also capable of parthenogenesis in the absence of males (facultative parthenogenesis), but recent research has revealed that this ability is widespread among squamates.
Parthenogenesis can result from either full cloning of the mother's genome, or through the combination of haploid genomes to create a "half-clone". Both mechanisms of parthenogenesis are seen in reptiles.
Females can produce full clones of themselves through a modification of the normal meiosis process used to produce haploid egg cells for sexual reproduction. The female's germ cells undergo a process of premeiotic genome doubling, or endoreduplication, so that two consecutive division cycles in the process of meoisis result in a diploid, rather than haploid, genome. Whereas homologous chromosomes pair and separate during meiosis I in sexual species, identical duplicate sister chromosomes, produced through premeiotic replication, pair and separate during meiosis I in true parthenotes. Pairing of identical sister chromosomes, in comparison to the alternative of pairing homologous chromosomes, maintains heterozygosity in obligate parthenotes. Meiosis II involves the separation of sister chromatids in both sexual and parthenogenetic species. This method of parthenogenesis is observed in obligate parthenotes, such as lizards in the genus Cnemidophorus and Lacerta, and also in certain facultative parthenotes like the Burmese python.