A clustered file system is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system (only direct attached storage for each node). Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.
A shared-disk file system uses a storage-area network (SAN) to allow multiple computers to gain direct disk access at the block level. Access control and translation from file-level operations that applications use to block-level operations used by the SAN must take place on the client node. The most common type of clustered file system, the shared-disk file system —by adding mechanisms for concurrency control—provides a consistent and serializable view of the file system, avoiding corruption and unintended data loss even when multiple clients try to access the same files at the same time. Shared-disk file-systems commonly employ some sort of fencing mechanism to prevent data corruption in case of node failures, because an unfenced device can cause data corruption if it loses communication with its sister nodes and tries to access the same information other nodes are accessing.
The underlying storage area network may use any of a number of block-level protocols, including SCSI, iSCSI, HyperSCSI, ATA over Ethernet (AoE), Fibre Channel, network block device, and InfiniBand.