In studies of binocular vision the horopter is the locus of points in space that have the same disparity as fixation. This can be defined theoretically as the points in space which project on corresponding points in the two retinas, that is, on anatomically identical points. The horopter can be measured empirically in which it is defined using some criterion.
The horopter as a special set of points of single vision was first mentioned in the eleventh century by Ibn al-Haytham, known to the west as "Alhazen". He built on the binocular vision work of Ptolemy and discovered that objects lying on a horizontal line passing through the fixation point resulted in single images, while objects a reasonable distance from this line resulted in double images. Thus Alhazen noticed the importance of some points in the visual field but did not work out the exact shape of the horopter and used singleness of vision as a criterion.
The term horopter was introduced by Franciscus Aguilonius in the second of his six books in optics in 1613. In 1818, Gerhard Vieth argued from Euclidean geometry that the horopter must be a circle passing through the fixation-point and the nodal point of the two eyes. A few years later Johannes Müller made a similar conclusion for the horizontal plane containing the fixation point, although he did expect the horopter to be a surface in space (i.e., not restricted to the horizontal plane). The theoretical/geometrical horopter in the horizontal plane became known as the Vieth-Müller circle. However, see the next section Theoretical horopter for the claim that this has been the case of a mistaken identity for about 200 years.
In 1838, Charles Wheatstone invented the stereoscope, allowing him to explore the empirical horopter. He found that there were many points in space that yielded single vision; this is very different from the theoretical horopter, and subsequent authors have similarly found that the empirical horopter deviates from the form expected on the basis of simple geometry. Recently, plausible explanation has been provided to this deviation, showing that the empirical horopter is adapted to the statistics of retinal disparities normally experienced in natural environments . In this way, the visual system is able to optimize its resources to the stimuli that are more likely to be experienced.