A paleothermometer is a methodology for determining past temperatures using a proxy found in a natural record such as a sediment, ice core, tree rings or TEX86.
The isotopic ratio of 18O to 16O, usually in foram tests or ice cores. High values mean low temperatures. Confounded by ice volume - more ice means higher δ18O values.
Ocean water is mostly H216O, with small amounts of HD16O and H218O. In Standard Mean Ocean Water (SMOW) the ratio of D to H is and 18O/16O is . Fractionation occurs during changes between condensed and vapour phases: the vapour pressure of heavier isotopes is lower, so vapour contains relatively more of the lighter isotopes and when the vapour condenses the precipitation preferentially contains heavier isotopes. The difference from SMOW is expressed as δ18; and a similar formula for δD. δ18O values for precipitation are always negative. The major influence on δ18O is the difference between ocean temperatures where the moisture evaporated and the place where the final precipitation occurred; since ocean temperatures are relatively stable the δ18O value mostly reflects the temperature where precipitation occurs. Taking into account that the precipitation forms above the inversion layer, we are left with a linear relation: