*** Welcome to piglix ***

Page replacement algorithms


In a computer operating system that uses paging for virtual memory management, page replacement algorithms decide which memory pages to page out (swap out, write to disk) when a page of memory needs to be allocated. Paging happens when a page fault occurs and a free page cannot be used to satisfy the allocation, either because there are none, or because the number of free pages is lower than some threshold.

When the page that was selected for replacement and paged out is referenced again it has to be paged in (read in from disk), and this involves waiting for I/O completion. This determines the quality of the page replacement algorithm: the less time waiting for page-ins, the better the algorithm. A page replacement algorithm looks at the limited information about accesses to the pages provided by hardware, and tries to guess which pages should be replaced to minimize the total number of page misses, while balancing this with the costs (primary storage and processor time) of the algorithm itself.

The page replacing problem is a typical online problem from the competitive analysis perspective in the sense that the optimal deterministic algorithm is known.

Page replacement algorithms were a hot topic of research and debate in the 1960s and 1970s. That mostly ended with the development of sophisticated LRU (least recently used) approximations and working set algorithms. Since then, some basic assumptions made by the traditional page replacement algorithms were invalidated, resulting in a revival of research. In particular, the following trends in the behavior of underlying hardware and user-level software have affected the performance of page replacement algorithms:

Requirements for page replacement algorithms have changed due to differences in operating system kernel architectures. In particular, most modern OS kernels have unified virtual memory and file system caches, requiring the page replacement algorithm to select a page from among the pages of both user program virtual address spaces and cached files. The latter pages have specific properties. For example, they can be locked, or can have write ordering requirements imposed by journaling. Moreover, as the goal of page replacement is to minimize total time waiting for memory, it has to take into account memory requirements imposed by other kernel sub-systems that allocate memory. As a result, page replacement in modern kernels (Linux, FreeBSD, and Solaris) tends to work at the level of a general purpose kernel memory allocator, rather than at the higher level of a virtual memory subsystem.


...
Wikipedia

...