*** Welcome to piglix ***

P-FEM


p-FEM or the p-version of the finite element method is a numerical method for solving partial differential equations. It is a discretization strategy in which the finite element mesh is fixed and the polynomial degrees of elements are increased such that the lowest polynomial degree, denoted by , approaches infinity. This is in contrast with the "h-version" or "h-FEM", a widely used discretization strategy, in which the polynomial degrees of elements are fixed and the mesh is refined such that the diameter of the largest element, denoted by approaches zero.

It was demonstrated on the basis of a linear elastic fracture mechanics problem that sequences of finite element solutions based on the p-version converge faster than sequences based on the h-version by Szabó and Mehta in 1978. The theoretical foundations of the p-version were established in a paper published Babuška, Szabó and Katz in 1981 where it was shown that for a large class of problems the asymptotic rate of convergence of the p-version in energy norm is at least twice that of the h-version, assuming that quasi-uniform meshes are used. Additional computational results and evidence of faster convergence of the p-version were presented by Babuška and Szabó in 1982.


...
Wikipedia

...