In signal processing, the overlap–add method (OA, OLA) is an efficient way to evaluate the discrete convolution of a very long signal with a finite impulse response (FIR) filter :
where h[m] = 0 for m outside the region [1, M].
The concept is to divide the problem into multiple convolutions of h[n] with short segments of :
where L is an arbitrary segment length. Then:
and y[n] can be written as a sum of short convolutions:
where is zero outside the region [1, L + M − 1]. And for any parameter it is equivalent to the -point circular convolution of with in the region [1, N].