*** Welcome to piglix ***

Osculating curve


In differential geometry, an osculating curve is a plane curve from a given family that has the highest possible order of contact with another curve. That is, if F is a family of smooth curves, C is a smooth curve (not in general belonging to F), and p is a point on C, then an osculating curve from F at p is a curve from F that passes through p and has as many of its derivatives at p equal to the derivatives of C as possible.

The term derives from the Latinate root "osculate", to kiss, because the two curves contact one another in a more intimate way than simple tangency.

Examples of osculating curves of different orders include:

The concept of osculation can be generalized to higher-dimensional spaces, and to objects that are not curves within those spaces. For instance an osculating plane to a space curve is a plane that has second-order contact with the curve. This is as high an order as is possible in the general case.


...
Wikipedia

...