In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.
There are two orthorhombic Bravais lattices in two dimensions: Primitive rectangular and centered rectangular. The primitive rectangular lattice can also be described by a centered rhombic unit cell, while the centered rectangular lattice can also be described by a primitive rhombic unit cell.
There are four orthorhombic Bravais lattices: primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic.
In the orthorhombic system there is a second choice of crystal axes that results in a unit cell with the shape of a right rhombic prism, although this axis setting is very rarely used; this is because the rectangular two-dimensional base layers can also be described with rhombic axes. In this axis setting, the primitive and base-centered lattices interchange in centering type, while the same thing happens with the body-centered and face-centered lattices.
The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number,orbifold notation, type, and space groups are listed in the table below.