The Orion Service Module is the service module component of the Orion spacecraft, serving as its primary power and propulsion component until it is discarded at the end of each mission. In January 2013, NASA announced that the European Space Agency (ESA) will construct the service module for Exploration Mission 1, replacing the previous design. Based on ESA's Automated Transfer Vehicle (ATV), the new design is also known as the European Service Module (ESM).
The service module supports the crew module from launch through separation prior to reentry. It provides in-space propulsion capability for orbital transfer, attitude control, and high altitude ascent aborts. It provides the water and oxygen needed for a habitable environment, generates and stores electrical power, and maintains the temperature of the vehicle's systems and components. This module can also transport unpressurized cargo and scientific payloads.
Roughly cylindrical in shape, the original American-designed Orion service module, would, like the crew module, have been constructed of Al-Li alloy (to keep weight down), and would have featured a pair of deployable circular solar panels, similar in design to the panels used on the Mars Phoenix lander. The panels, the first to be used on a U.S. manned spacecraft (except for a 10-year period, the Soviet/Russian Soyuz spacecraft has used them since the first mission in 1967), would allow NASA to eliminate the need to carry malfunction-prone fuel cells, and their associated hardware (mainly LH2 tanks) in the service module, resulting in a shorter, yet more maneuverable spacecraft. Successful initial testing of an Orion solar array design using full-scale "UltraFlex wing" hardware was reported in October, 2008.
The Orion Main Engine (OME) was a 7500-pound thrust, pressure-fed, regeneratively cooled, storable bi-propellant rocket engine to be made by Aerojet. The OME was an increased performance version of the 6000-pound thrust rocket engine used by the Space Shuttle for its Orbital Maneuvering System (OMS). The SM Reaction Control System (RCS), the spacecraft's maneuvering thrusters (originally based on the Apollo "quad" system, but resembling that used on Gemini), would also be pressure-fed, and would use the same propellants. NASA believed the SM RCS would be able to act as a backup for a trans-Earth injection (TEI) burn in case the main SM engine fails.