Origin of the Moon refers to any of the various explanations for the formation of the Moon, Earth's natural satellite. The leading theory has been the giant-impact hypothesis. However, research continues on this matter, and there are a number of variations and alternatives. Other proposed scenarios include captured body, fission, formed together (condensation theory), planetesimal collisions (formed from asteroid-like bodies), and collision theories.
The standard giant-impact hypothesis suggests a Mars-sized body called Theia impacted Earth, creating a large debris ring around Earth, which then accreted to form the Moon. This collision also resulted in the 23.5° tilted axis of the earth, thus causing the seasons. However, the Moon's oxygen isotopic ratios seem to be essentially identical to Earth's. Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each solar system body. If Theia had been a separate protoplanet, it probably would have had a different oxygen isotopic signature from Earth, as would the ejected mixed material. Also, the Moon's titanium isotope ratio (50Ti/47Ti) appears so close to the Earth's (within 4 ppm) that little if any of the colliding body's mass could likely have been part of the Moon.
"One of the challenges to the longstanding theory of the collision, is that a Mars-sized impacting body, whose composition likely would have differed substantially from that of Earth, likely would have left Earth and the moon with different chemical compositions, which they are not."
Some theories have been stated that presume the Earth had no large moons early in the formation of the Solar System, 4.6 billion years ago, Earth being basically rock and lava. Theia, an early protoplanet the size of Mars, hit Earth in such a way that it ejected a considerable amount of material away from Earth. Some proportion of this ejecta escaped into space, but the rest consolidated into a single body in orbit about Earth, creating the Moon.
The hypothesis requires a collision between a body about 90% of the present size of Earth, and another the diameter of Mars (half of the terrestrial radius and a tenth of its mass). The colliding body has sometimes been referred to as Theia, the mother of Selene, the Moon goddess in Greek mythology. This size ratio is needed in order for the resulting system to have sufficient angular momentum to match the current orbital configuration. Such an impact would have put enough material into orbit around Earth to have eventually accumulated to form the Moon.