*** Welcome to piglix ***

Ordinal regression


In statistics, ordinal regression (also called "ordinal classification") is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant. It can be considered an intermediate problem between regression and classification. Examples of ordinal regression are ordered logit and ordered probit. Ordinal regression turns up often in the social sciences, for example in the modeling of human levels of preference (on a scale from, say, 1–5 for "very poor" through "excellent"), as well as in information retrieval. In machine learning, ordinal regression may also be called ranking learning.

Ordinal regression can be performed using a generalized linear model (GLM) that fits both a coefficient vector and a set of thresholds to a dataset. Suppose one has a set of observations, represented by length-p vectors x1 through xn, with associated responses y1 through yn, where each yi is an ordinal variable on a scale 1, ..., K. To this data, one fits a length-p coefficient vector w and a set of thresholds θ1, ..., θK−1 with the property that θ1 < θ2 < ... < θK−1. This set of thresholds divides the real number line into K disjoint segments, corresponding to the K response levels.


...
Wikipedia

...