*** Welcome to piglix ***

Operating system-level virtualization


Operating-system-level virtualization is a server virtualization method in which the kernel of an operating system allows the existence of multiple isolated user-space instances, instead of just one. Such instances, which are sometimes called containers,virtualization engines (VEs) or jails (FreeBSD jail or chroot jail), may look and feel like a real server from the point of view of its owners and users.

On Unix-like operating systems, this technology can be seen as an advanced implementation of the standard chroot mechanism. In addition to isolation mechanisms, the kernel often provides resource-management features to limit the impact of one container's activities on other containers.

Operating-system-level virtualization is commonly used in virtual hosting environments, where it is useful for securely allocating finite hardware resources amongst a large number of mutually-distrusting users. System administrators may also use it, to a lesser extent, for consolidating server hardware by moving services on separate hosts into containers on the one server.

Other typical scenarios include separating several applications to separate containers for improved security, hardware independence, and added resource management features. The improved security provided by the use of a chroot mechanism, however, is nowhere near ironclad. Operating-system-level virtualization implementations capable of live migration can also be used for dynamic load balancing of containers between nodes in a cluster.

Operating-system-level virtualization usually imposes little to no overhead, because programs in virtual partitions use the operating system's normal system call interface and do not need to be subjected to emulation or be run in an intermediate virtual machine, as is the case with whole-system virtualizers (such as VMware ESXi, QEMU or Hyper-V) and paravirtualizers (such as Xen or UML). This form of virtualization also does not require support in hardware to perform efficiently.


...
Wikipedia

...