*** Welcome to piglix ***

One's complement


The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary representation of the number (swapping 0s for 1s and vice versa). The ones' complement of the number then behaves like the negative of the original number in some arithmetic operations. To within a constant (of −1), the ones' complement behaves like the negative of the original number with binary addition. However, unlike two's complement, these numbers have not seen widespread use because of issues such as the offset of −1, that negating zero results in a distinct negative zero bit pattern, less simplicity with arithmetic borrowing, etc.

A ones' complement system or ones' complement arithmetic is a system in which negative numbers are represented by the inverse of the binary representations of their corresponding positive numbers. In such a system, a number is negated (converted from positive to negative or vice versa) by computing its ones' complement. An N-bit ones' complement numeral system can only represent integers in the range −(2N−1−1) to 2N−1−1 while two's complement can express −2N−1 to 2N−1−1.

The ones' complement binary numeral system is characterized by the bit complement of any integer value being the arithmetic negative of the value. That is, inverting all of the bits of a number (the logical complement) produces the same result as subtracting the value from 0.

Many early computers, including the CDC 6600, the LINC, the PDP-1, and the UNIVAC 1107, used ones' complement notation. Successors of the CDC 6600 continued to use ones' complement until the late 1980s, and the descendants of the UNIVAC 1107 (the UNIVAC 1100/2200 series) still do, but the majority of modern computers use two's complement.

Positive numbers are the same simple, binary system used by two's complement and sign-magnitude. Negative values are the bit complement of the corresponding positive value. The largest positive value is characterized by the sign (high-order) bit being off (0) and all other bits being on (1). The smallest negative value is characterized by the sign bit being 1, and all other bits being 0. The table below shows all possible values in a 4-bit system, from −7 to +7.


...
Wikipedia

...