*** Welcome to piglix ***

On Growth and Form

On Growth and Form
On Growth and Form 1st Edition 1917 title page.jpg
Title page of first edition
Author D'Arcy Wentworth Thompson
Illustrator Thompson
Country United Kingdom
Subject Mathematical biology
Genre Descriptive science
Publisher Cambridge University Press
Publication date
1917
Pages 793
1942 edition, 1116
Awards Daniel Giraud Elliot Medal

On Growth and Form is a book by the Scottish mathematical biologist D'Arcy Wentworth Thompson (1860–1948). The book is long – 793 pages in the first edition of 1917, 1116 pages in the second edition of 1942.

The book covers many topics including the effects of scale on the shape of animals and plants, large ones necessarily being relatively thick in shape; the effects of surface tension in shaping soap films and similar structures such as cells; the logarithmic spiral as seen in mollusc shells and ruminant horns; the arrangement of leaves and other plant parts (phyllotaxis); and Thompson's own method of transformations, showing the changes in shape of animal skulls and other structures on a Cartesian grid.

The work is widely admired by biologists, anthropologists and architects among others, but less often read than cited.Peter Medawar explains this as being because it clearly pioneered the use of mathematics in biology, and helped to defeat mystical ideas of vitalism; but that the book is weakened by Thompson's failure to understand the role of evolution and evolutionary history in shaping living structures. Philip Ball on the other hand suspects that while Thompson argued for physical mechanisms, his rejection of natural selection bordered on vitalism.

D'Arcy Wentworth Thompson's most famous work, On Growth and Form was written in Dundee, mostly in 1915, but publication was put off until 1917 because of the delays of wartime and Thompson's many late alterations to the text. The central theme of the book is that biologists of its author's day overemphasized evolution as the fundamental determinant of the form and structure of living organisms, and underemphasized the roles of physical laws and mechanics. At a time when vitalism was still being considered as a biological theory, he advocated structuralism as an alternative to natural selection in governing the form of species, with the smallest hint of vitalism as the unseen driving force.


...
Wikipedia

...