*** Welcome to piglix ***

Number needed to treat


The number needed to treat (NNT) is an epidemiological measure used in communicating the effectiveness of a health-care intervention, typically a treatment with medication. The NNT is the average number of patients who need to be treated to prevent one additional bad outcome (e.g. the number of patients that need to be treated for one of them to benefit compared with a control in a clinical trial). It is defined as the inverse of the absolute risk reduction. It was described in 1988 by McMaster University's Laupacis, Sackett and Roberts. The ideal NNT is 1, where everyone improves with treatment and no one improves with control. The higher the NNT, the less effective is the treatment.

NNT is similar to number needed to harm (NNH), where NNT usually refers to a therapeutic intervention and NNH to a detrimental effect or risk factor.

The NNT is an important measure in pharmacoeconomics. If a clinical endpoint is devastating enough (e.g. death, heart attack), drugs with a high NNT may still be indicated in particular situations. If the endpoint is minor, health insurers may decline to reimburse drugs with a high NNT. NNT is significant to consider when comparing possible side effects of a medication against its benefits. For medications with a high NNT, even a small incidence of adverse effects may outweigh the benefits. Even though NNT is an important measure in a clinical trial, it is infrequently included in medical journal articles reporting the results of clinical trials. There are several important problems with the NNT, involving bias and lack of reliable confidence intervals, as well as difficulties in excluding the possibility of no difference between two treatments or groups.

Variants of NNT are sometimes used for more specialized purposes. One example is number needed to vaccinate.

NNT values are time-specific. For example, if a study ran for 5 years and another ran for 1 year, the NNT values would not be directly comparable.

NNT is the reciprocal of the absolute risk reduction i.e. 1/absolute risk reduction. In general, NNT is computed with respect to two treatments A and B, with A typically the intervention and B the control (e.g., A might be a 5-year treatment with a drug, while B is no treatment). A defined endpoint has to be specified (e.g., the appearance of colon cancer in a five-year period). If the probabilities pA and pB of this endpoint under treatments A and B, respectively, are known, then the NNT is computed as 1/(pBpA). NNT is a number between 1 and ∞; effective interventions have a low NNT. A negative number would not be presented as a NNT, rather, as the intervention is harmful, it is expressed as a number needed to harm (NNH). The units of the aforementioned probabilities are expressed as number of events per subject (see worked out example below); therefore, the inverse NNH will be number of subjects per event.


...
Wikipedia

...