*** Welcome to piglix ***

Null graph

Order-zero graph (null graph)
Vertices 0
Edges 0
Girth
Automorphisms 1
Chromatic number 0
Chromatic index 0
Genus 0
Properties Integral
Symmetric
Notation
Edgeless graph (empty graph, null graph)
Vertices n
Edges 0
Radius 0
Diameter 0
Girth
Automorphisms n!
Chromatic number 1
Chromatic index 0
Genus 0
Properties Integral
Symmetric
Notation

In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").

The order-zero graph, , is the unique graph having no vertices (hence its order is zero). It follows that also has no edges. Some authors exclude from consideration as a graph (either by definition, or more simply as a matter of convenience). Whether including as a valid graph is useful depends on context. On the positive side, follows naturally from the usual set-theoretic definitions of a graph (it is the ordered pair (V, E) for which the vertex and edge sets, V and E, are both empty), in proofs it serves as a natural base case for mathematical induction, and similarly, in recursively defined data structures is useful for defining the base case for recursion (by treating the null tree as the child of missing edges in any non-null binary tree, every non-null binary tree has exactly two children). On the negative side, including as a graph requires that many well-defined formulas for graph properties include exceptions for it (for example, either "counting all strongly connected components of a graph" becomes "counting all non-null strongly connected components of a graph", or the definition of connected graphs has to be modified not to include K0). To avoid the need for such exceptions, it is often assumed in literature that the term graph implies "graph with at least one vertex" unless context suggests otherwise.


...
Wikipedia

...