*** Welcome to piglix ***

Nucleate boiling


Nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, nucleate boiling occurs when the surface temperature is higher than the saturation temperature (TS) by between 10 °C (18 °F) to 30 °C (54 °F). The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling.

Two different regimes may be distinguished in the nucleate boiling range. When the temperature difference is between approximately 4 °C (7.2 °F) to 10 °C (18 °F) above TS, isolated bubbles form at nucleation sites and separate from the surface. This separation induces considerable fluid mixing near the surface, substantially increasing the convective heat transfer coefficient and the heat flux. In this regime, most of the heat transfer is through direct transfer from the surface to the liquid in motion at the surface and not through the vapor bubbles rising from the surface.

Between 10 °C (18 °F) and 30 °C (54 °F) above TS, a second flow regime may be observed. As more nucleation sites become active, increased bubble formation causes bubble interference and coalescence. In this region the vapor escapes as jets or columns which subsequently merge into slugs of vapor.

Interference between the densely populated bubbles inhibits the motion of liquid near the surface. This is observed on the graph as a change in the direction of the gradient of the curve or an inflection in the boiling curve. After this point, the heat transfer coefficient starts to reduce as the surface temperature is further increased although the product of the heat transfer coefficient and the temperature difference (the heat flux) is still increasing.

When the relative increase in the temperature difference is balanced by the relative reduction in the heat transfer coefficient, a maximum heat flux is achieved as observed by the peak in the graph. This is the critical heat flux. At this point in the maximum, considerable vapor is being formed, making it difficult for the liquid to continuously wet the surface to receive heat from the surface. This causes the heat flux to reduce after this point. At extremes, film boiling commonly known as the Leidenfrost effect is observed.


...
Wikipedia

...