*** Welcome to piglix ***

Nuclear reactor control


Nuclear reactor physics is the branch of science that deals with the study and application of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel (a reactor core), usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods that control the rate of the reaction.

The physics of nuclear fission has several quirks that affect the design and behavior of nuclear reactors. This article presents a general overview of the physics of nuclear reactors and their behavior.

In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor’s neutron population remains steady from one generation to the next (creating as many new neutrons as are lost), the fission chain reaction is self-sustaining and the reactor's condition is referred to as "critical". When the reactor’s neutron production exceeds losses, characterized by increasing power level, it is considered "supercritical", and when losses dominate, it is considered "subcritical" and exhibits decreasing power.

The "Six-factor formula" is the neutron life-cycle balance equation, which includes six separate factors, the product of which is equal to the ratio of the number of neutrons in any generation to that of the previous one; this parameter is called the effective multiplication factor k, also denoted by Keff, where k = Є Lf ρ Lthf η, where Є = "fast-fission factor", Lf = "fast non-leakage factor", ρ = "resonance escape probability", Lth = "thermal non-leakage factor", f = "thermal fuel utilization factor", and η = "reproduction factor". This equation's factors are roughly in order of potential occurrence for a fission born neutron during critical operation. As already mentioned before, k = (Neutrons produced in one generation)/(Neutrons produced in the previous generation). In other words, when the reactor is critical, k = 1; when the reactor is subcritical, k < 1; and when the reactor is supercritical, k > 1.


...
Wikipedia

...