Nuclear forensics is the investigation of nuclear materials to find evidence for the source, the trafficking, and the enrichment of the material. The material can be recovered from various sources including dust from the vicinity of a nuclear facility, or from the radioactive debris following a nuclear explosion.
Results of nuclear forensic testing are used by different organisations to make decisions. The information is typically combined with other sources of information such as law enforcement and intelligence information.
The first seizures of nuclear or otherwise radioactive material were reported in Switzerland and Italy in 1991. Later, reports of incidents of nuclear material occurred in Germany, the Czech Republic, Hungary and other central European countries. Nuclear Forensics became a new branch of scientific research with the intent of not only determining the nature of the material, but also the intended use of the seized material as well as its origin and about the potential trafficking routes. Nuclear forensics relies on making these determinations through measurable parameters including, but not limited to chemical impurities, isotopic composition, microscopic appearance, and microstructure. By measuring these parameters, conclusions can be drawn as to the origin of the material. Identification of these parameters is an ongoing area of research, however, data interpretation also relies on the availability of reference information and on knowledge of the fuel cell operations.
The first investigative radiochemical measurements began in the early days of nuclear fission. In 1944, the US Air Force made the first attempts to detect fissiogenic 133Xe in the atmosphere in order to indicate the production of plutonium through the irradiation of uranium and chemical reprocessing in an effort to gather intelligence on the status of the German nuclear program. However, no 133Xe was detected. In the subsequent years it became increasingly valuable to gather information on the Soviet nuclear weapons program, which resulted in the development of technologies that could gather airborne particles in a WB-29 weather reconnaissance plane. On September 3, 1949, these particles were used to determine that the detonation time of the first Soviet atomic test, "Joe 1". Further analysis revealed that this bomb was a replicate of the "Fat Man", which was the bomb dropped on Nagasaki in 1945. This investigative methodology combined radiochemistry and other techniques to gather intelligence on nuclear activities.