Nuclear DNA, or nuclear deoxyribonucleic acid (nDNA), is DNA contained within a nucleus of eukaryotic organisms. Nuclear DNA encodes for the majority of the genome in eukaryotes, with DNA located in and plastids coding for the rest. Nuclear DNA adheres to Mendelian inheritance, with information coming from two parents, one male and one female, rather than matrilineally, as in .
Nuclear DNA is a nucleic acid, a complex organic compound, found in the nucleus of eukaryotic organisms. Its structure is a double helix, with two strands wound around each other. This double helix structure was first described by Francis Crick and James D. Watson (1953) using data collected by Rosalind Franklin. Each strand is a long polymer chain of repeating nucleotides. Each nucleotide is composed of a five-carbon sugar, a phosphate group, and an organic base. Nucleotides are distinguished by their bases. There are the purines, large bases which include adenine and guanine, and pyrimidines, small bases which include thymine and cytosine. Chargaff's rules state that adenine will always pair with thymine and guanine will always pair with cytosine. The phosphate groups are held together by a phosphodiester bond and the bases are held together by hydrogen bonds.
Nuclear DNA and mitochondrial DNA differ in many ways, starting with location and structure. Nuclear DNA is located within the nucleus of eukaryote cells and usually has two copies per cell while mitochondrial DNA is located in the mitochondria and contains 100-1,000 copies per cell. The structure of nuclear DNA chromosomes is linear with open ends and includes 46 chromosomes containing 3 billion nucleotides. Mitochondrial DNA chromosomes usually have closed, circular structures, and contain for example 16,569 nucleotides in human. Nuclear DNA is diploid, inheriting the DNA from both mother and father, while mitochondrial DNA is haploid, coming only from the mother. The mutation rate for nuclear DNA is less than 0.3% while that of mitochondrial DNA is generally higher.