*** Welcome to piglix ***

Normalization of an algebraic variety


In algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X (understood to be irreducible) is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism.

Normal varieties were introduced by Zariski (1939, section III).

A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve X in the affine plane A2 defined by x2 = y3 is not normal, because there is a finite birational morphism A1X (namely, t maps to (t3, t2)) which is not an isomorphism. By contrast, the affine line A1 is normal: it cannot be simplified any further by finite birational morphisms.

A normal complex variety X has the property, when viewed as a stratified space using the classical topology, that every link is connected. Equivalently, every complex point x has arbitrarily small neighborhoods U such that U minus the singular set of X is connected. For example, it follows that the nodal cubic curve X in the figure, defined by x2 = y2(y + 1), is not normal. This also follows from the definition of normality, since there is a finite birational morphism from A1 to X which is not an isomorphism; it sends two points of A1 to the same point in X.

Singularptfn.JPG


...
Wikipedia

...