*** Welcome to piglix ***

Norm topology


In mathematics, the operator norm is a means to measure the "size" of certain linear operators. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces.

Given two normed vector spaces V and W (over the same base field, either the real numbers R or the complex numbers C), a linear map A : VW is continuous if and only if there exists a real number c such that

The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector more than by a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, it then seems natural to take the infimum of the numbers c such that the above inequality holds for all v in V. In other words, we measure the "size" of A by how much it "lengthens" vectors in the "biggest" case. So we define the operator norm of A as

The infimum is attained as the set of all such c is closed, nonempty, and bounded from below.

It is important to bear in mind that this operator norm depends on the choice of norms for the normed vector spaces V and W.

Every real m-by-n matrix corresponds to a linear map from Rn to Rm. Each pair of the plethora of (vector) norms applicable to real vector spaces induces an operator norm for all m-by-n matrices of real numbers; these induced norms form a subset of matrix norms.


...
Wikipedia

...