*** Welcome to piglix ***

Nonstandard arithmetic


In mathematical logic, a non-standard model of arithmetic is a model of (first-order) Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).

There are several methods that can be used to prove the existence of non-standard models of arithmetic.

The existence of non-standard models of arithmetic can be demonstrated by an application of the compactness theorem. To do this, a set of axioms P* is defined in a language including the language of Peano arithmetic together with a new constant symbol x. The axioms consist of the axioms of Peano arithmetic P together with another infinite set of axioms: for each numeral n, the axiom x > n is included. Any finite subset of these axioms is satisfied by a model that is the standard model of arithmetic plus the constant x interpreted as some number larger than any numeral mentioned in the finite subset of P*. Thus by the compactness theorem there is a model satisfying all the axioms P*. Since any model of P* is a model of P (since a model of a set of axioms is obviously also a model of any subset of that set of axioms), we have that our extended model is also a model of the Peano axioms. The element of this model corresponding to x cannot be a standard number, because as indicated it is larger than any standard number.

Using more complex methods, it is possible to build non-standard models that possess more complicated properties. For example, there are models of Peano arithmetic in which Goodstein's theorem fails. It can be proved in Zermelo–Fraenkel set theory that Goodstein's theorem holds in the standard model, so a model where Goodstein's theorem fails must be non-standard.

Gödel's incompleteness theorems also imply the existence of non-standard models of arithmetic. The incompleteness theorems show that a particular sentence G, the Gödel sentence of Peano arithmetic, is not provable nor disprovable in Peano arithmetic. By the completeness theorem, this means that G is false in some model of Peano arithmetic. However, G is true in the standard model of arithmetic, and therefore any model in which G is false must be a non-standard model. Thus satisfying ~G is a sufficient condition for a model to be nonstandard. It is not a necessary condition, however; for any Gödel sentence G, there are models of arithmetic with G true of all cardinalities.


...
Wikipedia

...