Non-well-founded set theories are variants of axiomatic set theory that allow sets to contain themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axioms implying its negation.
The study of non-well-founded sets was initiated by Dmitry Mirimanoff in a series of papers between 1917 and 1920, in which he formulated the distinction between well-founded and non-well-founded sets; he did not regard well-foundedness as an axiom. Although a number of axiomatic systems of non-well-founded sets were proposed afterwards, they did not find much in the way of applications until Peter Aczel’s hyperset theory in 1988.
The theory of non-well-founded sets has been applied in the logical modelling of non-terminating computational processes in computer science (process algebra and final semantics), linguistics and natural language semantics (situation theory), philosophy (work on the Liar Paradox), and in a different setting, non-standard analysis.
In 1917, Dmitry Mirimanoff introduced the concept of well-foundedness of a set:
In ZFC, there is no infinite descending ∈-sequence by the axiom of regularity. In fact, the axiom of regularity is often called the foundation axiom since it can be proved within ZFC− (that is, ZFC without the axiom of regularity) that well-foundedness implies regularity. In variants of ZFC without the axiom of regularity, the possibility of non-well-founded sets with set-like ∈-chains arises. For example, a set A such that A ∈ A is non-well-founded.