*** Welcome to piglix ***

Node influence metric


In graph theory and network analysis, node influence metrics are measures that rank or quantify the influence of every node (also called vertex) within a graph. They are related to centrality indices. Applications include measuring the influence of each person in a social network, understanding the role of infrastructure nodes in transportation networks, the Internet, or urban networks, and the participation of a given node in disease dynamics.

The traditional approach to understanding node importance is via centrality indicators. Centrality indices are designed to produce a ranking which accurately identifies the most influential nodes. Since the mid 2000s, however, social scientists and network physicists have begun to question the suitability of centrality indices for understanding node influence. Centralities may indicate the most influential nodes, but they are rather less informative for the vast majority of nodes which are not highly influential.

Borgatti and Everett's 2006 review article. showed that the accuracy of centrality indices is highly dependent on network topology. This finding has been repeatedly observed since then. (e.g.). In 2012, Bauer and colleagues reminded us that centrality indices only rank nodes but do not quantify the difference between them. In 2013, Sikic and colleagues presented strong evidence that centrality indices considerably underestimate the power of non-hub nodes. The reason is quite clear. The accuracy of a centrality measure depends on network topology, but complex networks have heterogenous topology. Hence a centrality measure which is appropriate for identifying highly influential nodes will most likely be inappropriate for the remainder of the network.

This has inspired the development of novel methods designed to measure the influence of all network nodes. The most general of these are the accessibility, which uses the diversity of random walks to measure how accessible the rest of the network is from a given start node, and the expected force, derived from the expected value of the force of infection generated by a node. Both of these measures can be meaningfully computed from the structure of the network alone.


...
Wikipedia

...