In chemistry, the noble metals are metals that are resistant to corrosion and oxidation in moist air (unlike most base metals). The short list of chemically noble metals (those elements upon which almost all chemists agree) comprises ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au).
More inclusive lists include one or more of mercury (Hg),rhenium (Re) or copper (Cu) as noble metals. On the other hand, titanium (Ti), niobium (Nb), and tantalum (Ta) are not included as noble metals although they are very resistant to corrosion.
While the noble metals tend to be valuable – due to both their rarity in the Earth's crust and their usefulness in areas like metallurgy, high technology, and ornamentation (jewelry, art, sacred objects, etc.) – the terms "noble metal" and "precious metal" are not synonymous.
The term noble metal can be traced back to at least the late 14th century and has slightly different meanings in different fields of study and application. Only in atomic physics is there a strict definition, which includes only copper, silver, and gold, because they have completely filled d-subshells. For this reason there are many quite different lists of "noble metals".
In addition to this term's function as a compound noun, there are circumstances where "noble" is used as an adjective for the noun "metal". A "galvanic series" is a hierarchy of metals (or other electrically conductive materials, including composites and semimetals) that runs from noble to active, and allows one to predict how materials will interact in the environment used to generate the series. In this sense of the word, graphite is more noble than silver and the relative nobility of many materials is highly dependent upon context, as for aluminium and stainless steel in conditions of varying pH.