*** Welcome to piglix ***

Nipkow disk


A Nipkow disk (sometimes Anglicized as Nipkov disk; patented in 1884), also known as scanning disk, is a mechanical, rotating, geometrically operating image scanning device, patented in 1885 by Paul Gottlieb Nipkow. This scanning disk was a fundamental component in mechanical television through the 1920s and 1930s.

The device is a mechanically spinning disk of any suitable material (metal, plastic, cardboard, etc.), with a series of equally distanced circular holes of equal diameter drilled in it. The holes may also be square for greater precision.These holes are positioned to form a single-turn spiral starting from an external radial point of the disk and proceeding to the center of the disk. When the disk rotates, the holes trace circular ring patterns, with inner and outer diameter depending on each hole's position on the disk and thickness equal to each hole's diameter. The patterns may or may not partially overlap, depending on the exact construction of the disk. A lens projects an image of the scene in front of it directly onto the disk. Each hole in the spiral takes a "slice" through the image which is picked up as a pattern of light and dark by a sensor. If the sensor is made to control a light behind a second Nipkow disk rotating synchronously at the same speed and in the same direction, the image will be reproduced line-by-line. The size of the reproduced image is again determined by the size of the disc; a larger disc produces a larger image.

When spinning the disk while observing an object "through" the disk, preferably through a relatively small circular sector of the disk (the viewport), for example, an angular quarter or eighth of the disk, the object seems "scanned" line by line, first by length or height or even diagonally, depending on the exact sector chosen for observation. By spinning the disk rapidly enough, the object seems complete and capturing of motion becomes possible. This can be intuitively understood by covering all of the disk but a small rectangular area with black cardboard (which stays fixed), spinning the disk and observing an object through the small area.

One of the advantages of using a Nipkow disk is that the image sensor (that is, the device converting light to electric signals) can be as simple as a single or photodiode, since at each instant only a very small area (a pixel) is visible through the disk (and viewport), and so decomposing an image into lines is done almost by itself with little need for scanline timing, and very high scanline resolution. A simple acquisition device can be built by using an electrical motor driving a Nipkow disk, a small box containing a single light-sensitive (electric) element and a conventional image focusing device (lens, dark box, etc.).


...
Wikipedia

...