*** Welcome to piglix ***

Nielsen–Thurston classification


In mathematics, Thurston's classification theorem characterizes homeomorphisms of a compact orientable surface. William Thurston's theorem completes the work initiated by Jakob Nielsen (1944).

Given a homeomorphism f : S → S, there is a map g isotopic to f such that at least one of the following holds:

The case where S is a torus (i.e., a surface whose genus is one) is handled separately (see torus bundle) and was known before Thurston's work. If the genus of S is two or greater, then S is naturally hyperbolic, and the tools of Teichmüller theory become useful. In what follows, we assume S has genus at least two, as this is the case Thurston considered. (Note, however, that the cases where S has boundary or is not orientable are definitely still of interest.)

The three types in this classification are not mutually exclusive, though a pseudo-Anosov homeomorphism is never periodic or reducible. A reducible homeomorphism g can be further analyzed by cutting the surface along the preserved union of simple closed curves Γ. Each of the resulting compact surfaces with boundary is acted upon by some power (i.e. iterated composition) of g, and the classification can again be applied to this homeomorphism.

Thurston's classification applies to homeomorphisms of orientable surfaces of genus ≥ 2, but the type of a homeomorphism only depends on its associated element of the mapping class group Mod(S). In fact, the proof of the classification theorem leads to a canonical representative of each mapping class with good geometric properties. For example:


...
Wikipedia

...