*** Welcome to piglix ***

Nickel–metal hydride battery

Nickel–metal hydride battery
Eneloop 6420.jpg
Modern NiMH rechargeable cells
Specific energy 60–120 Wh/kg
Energy density 140–300 Wh/L
Specific power 250–1,000 W/kg
Charge/discharge efficiency 66%-92%
Self-discharge rate 13.9–70.6% at room temperature
36.4–97.8% at 45 °C
Low self-discharge: 1.3–2.9% at 20 °C
(per month)
Cycle durability 180–2000cycles
Nominal cell voltage 1.2 V

A nickel–metal hydride battery, abbreviated NiMH or Ni–MH, is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the nickel–cadmium cell (NiCd), with both using nickel oxide hydroxide (NiOOH). However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. A NiMH battery can have two to three times the capacity of an equivalent size NiCd, and its energy density can approach that of a lithium-ion battery.

Work on NiMH batteries began at the Battelle-Geneva Research Center following the technology's invention in 1967. It was based on sintered Ti2Ni+TiNi+x alloys and NiOOH-electrodes. Development was sponsored over nearly two decades by Daimler-Benz and by Volkswagen AG within Deutsche Automobilgesellschaft, now a subsidiary of Daimler AG. The batteries' specific energy reached 50 W·h/kg (180 kJ/kg), power density up to 1000 W/kg and a life of 500 charge cycles (at 100% depth of discharge). Patent applications were filed in European countries (priority: Switzerland), the United States, and Japan. The patents transferred to Daimler-Benz.

Interest grew in the 1970s with the commercialisation of the nickel–hydrogen battery for satellite applications. Hydride technology promised an alternative, less bulky way to store the hydrogen. Research carried out by Philips Laboratories and France's CNRS developed new high-energy hybrid alloys incorporating rare earth metals for the negative electrode. However, these suffered from alloy instability in alkaline electrolyte and consequently insufficient cycle life. In 1987, Willems and Buschow demonstrated a successful battery based on this approach (using a mixture of La0.8Nd0.2Ni2.5Co2.4Si0.1) which kept 84% of its charge capacity after 4000 charge–discharge cycles. More economically viable alloys using mischmetal instead of lanthanum were soon developed. Modern NiMH cells were based on this design. The first consumer grade NiMH cells became commercially available in 1989.


...
Wikipedia

...