Newton–Cartan theory (or geometrized Newtonian gravitation) is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
In Newton–Cartan theory, one starts with a smooth four-dimensional manifold and defines two (degenerate) metrics. A temporal metric with signature , used to assign temporal lengths to vectors on and a spatial metric with signature . One also requires that these two metrics satisfy a trasversality (or "orthogonality") condition, . Thus, one defines a classical spacetime as an ordered quadruple , where and are as described, is a metrics-compatible covariant derivative operator; and the metrics satisfy the orthogonality condition. One might say that a classical spacetime is the analog of a relativistic spacetime , where is a smooth Lorentzian metric on the manifold .