Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. Due to their weak interactions with matter, neutrinos offer a unique opportunity to observe processes that are inaccessible to optical telescopes.
The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources so far are the Sun and supernova SN1987A.
Neutrinos were first recorded in 1956 by Clyde Cowan and Frederick Reines from a nuclear reactor. Their discovery was acknowledged with a Nobel Prize for physics in 1995.
In 1968, Raymond Davis, Jr. and John N. Bahcall successfully detected the first solar neutrinos in the Homestake experiment. Davis, along with Japanese physicist Masatoshi Koshiba were jointly awarded half of the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos (the other half went to Riccardo Giacconi for corresponding pioneering contributions which have led to the discovery of cosmic X-ray sources)."
This was followed by the first atmospheric neutrino detection in 1965 by two groups almost simultaneously. One was led by Frederick Reines who operated a liquid scintillator in the East Rand gold mine in South Africa at an 8.8 km water depth equivalent. The other was a Bombay-Osaka-Durham collaboration that operated in the Indian Kolar Gold Field mine at an equivalent water depth of 7.5 km. Although the KGF group detected neutrino candidates two months later than Reines, they were given formal priority due to publishing their findings two weeks earlier.