Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the
Z
boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons.
The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with electrons, neutrinos, and quarks. The weak force is communicated via exchange particles like other subatomic forces. Perhaps the most well known of the exchange particles for the weak force is the W particle which is involved in beta decay. W particles have electric charge – there are both positive and negative W particles – however the Z boson is also an exchange particle for the weak force but does not have any electrical charge. Exchange of a Z boson transfers momentum, spin, and energy, but leaves the interacting particles’ quantum numbers unaffected – charge, flavor, baryon number, lepton number, etc. Because there is no transfer of electrical charge involved, exchange of Z particles is referred to as “neutral” in the phrase “neutral current”. However the word “current” here has nothing to do with electricity – it simply refers to the exchange of the Z particle.
The neutral current that gives the interaction its name is that of the interacting particles. For example, the neutral-current contribution to the
ν
e
e−
→
ν
e
e−
elastic scattering amplitude