*** Welcome to piglix ***

Net energy


Net Energy Gain (NEG) is a concept used in energy economics that refers to the difference between the energy expended to harvest an energy source and the amount of energy gained from that harvest. The net energy gain, which can be expressed in joules, differs from the net financial gain that may result from the energy harvesting process, in that various sources of energy (e.g. natural gas, coal, etc.) can be priced differently for the same amount of energy.

A net energy gain is achieved by expending less energy acquiring a source of energy than is contained in the source to be consumed. That is

Factors to consider when calculating NEG is the type of energy, the way energy is used and acquired, and the methods used to store or transport the energy. It is also possible to overcomplicate the equation by an infinite number of externalities and inefficiencies that may be present during the energy harvesting process.

The definition of an energy source is not rigorous. Anything that can provide energy to anything else can qualify. Wood in a stove is full of potential thermal energy; in a car, mechanical energy is acquired from the combustion of gasoline, and the combustion of coal is converted from thermal to mechanical, and then to electrical energy. Examples of energy sources include:

The term net energy gain can be used in slightly different ways:

The usual definition of net energy gain compares the energy required to extract energy (that is, to find it, remove it from the ground, refine it, and ship it to the energy user) with the amount of energy produced and transmitted to a user from some (typically underground) energy resource. To better understand this, assume an economy has a certain amount of finite oil reserves that are still underground, unextracted. To get to that energy, some of the extracted oil needs to be consumed in the extraction process to run the engines driving the pumps, therefore after extraction the net energy produced will be less than the amount of energy in the ground before extraction, because some had to be used up.

The extraction energy can be viewed in one of two ways: profitable extractable (NEG>0) or nonprofitable extractable (NEG<0). For instance, in the Athabasca Oil Sands, the highly diffuse nature of the tar sands and low price of crude oil rendered them uneconomical to mine until the late 1950s (NEG<0). Since then, the price of oil has risen and a new steam extraction technique has been developed, allowing the sands to become the largest oil provider in Alberta (NEG>0).


...
Wikipedia

...