*** Welcome to piglix ***

Nested data


In statistics, restricted randomization occurs in the design of experiments and in particular in the context of randomized experiments and randomized controlled trials. Restricted randomization allows intuitively poor allocations of treatments to experimental units to be avoided, while retaining the theoretical benefits of randomization. For example, in a clinical trial of a new proposed treatment of obesity compared to a control, an experimenter would want to avoid outcomes of the randomization in which the new treatment was allocated only to the heaviest patients.

The concept was introduced by Frank Yates (1948) and William J. Youden (1972) "as a way of avoiding bad spatial patterns of treatments in designed experiments."

Consider a batch process that uses 7 monitor wafers in each run. The plan further calls for measuring a response variable on each wafer at each of 9 sites. The organization of the sampling plan has a hierarchical or nested structure: the batch run is the topmost level, the second level is an individual wafer, and the third level is the site on the wafer.

The total amount of data generated per batch run will be 7 · 9 = 63 observations. One approach to analyzing these data would be to compute the mean of all these points as well as their standard deviation and use those results as responses for each run.

Analyzing the data as suggested above is not absolutely incorrect, but doing so loses information that one might otherwise obtain. For example, site 1 on wafer 1 is physically different from site 1 on wafer 2 or on any other wafer. The same is true for any of the sites on any of the wafers. Similarly, wafer 1 in run 1 is physically different from wafer 1 in run 2, and so on. To describe this situation one says that sites are nested within wafers while wafers are nested within runs.

As a consequence of this nesting, there are restrictions on the randomization that can occur in the experiment. This kind of restricted randomization always produces nested sources of variation. Examples of nested variation or restricted randomization discussed on this page are split-plot and strip-plot designs.


...
Wikipedia

...